Number of items: 3.
Pandey, Sandeep and
Broder, Andrei and
Chierichetti, Flavio and
Josifovski, Vanja and
Kumar, Ravi and
Vassilvitskii, Sergei Nearest-Neighbor Caching for Content-Match Applications. Motivated by contextual advertising systems and other web applications involving efficiency–accuracy tradeoffs, we study similarity caching. Here, a cache hit is said to occur if the requested item is similar but not necessarily equal to some cached item. We study two objectives that dictate the efficiency–accuracy tradeoff and provide our caching policies for these objectives. By conducting extensive experiments on real data we show similarity caching can significantly improve the efficiency of contextual advertising systems, with minimal impact on accuracy. Inspired by the above, we propose a simple generative model that embodies two fundamental characteristics of page requests arriving to advertising systems, namely, long-range dependences and similarities. We provide theoretical bounds on the gains of similarity caching in this model and demonstrate these gains empirically by fitting the actual data to the model.
Broder, Andrei and
Ciccolo, Peter and
Gabrilovich, Evgeniy and
Josifovski, Vanja and
Metzler, Donald and
Riedel, Lance and
Yuan, Jeffrey Online Expansion of Rare Queries for Sponsored Search. Sponsored search systems are tasked with matching queries to relevant advertisements. The current state-of-the-art matching algorithms expand the user’s query using a variety of external resources, such as Web search results. While these expansion-based algorithms are highly effective, they are largely inefficient and cannot be applied in real-time. In practice, such algorithms are applied offline to popular queries, with the results of the expensive operations cached for fast access at query time. In this paper, we describe an efficient and effective approach for matching ads against rare queries that were not processed offline. The approach builds an expanded query representation by leveraging offline processing done for related popular queries. Our experimental results show that our approach significantly improves the effectiveness of advertising on rare queries with only a negligible increase in computational cost.
Wang, Xuerui and
Broder, Andrei and
Fontoura, Marcus and
Josifovski, Vanja A Search-based Method for Forecasting Ad Impression in Contextual Advertising. Contextual advertising (also called content match) refers to the placement of small textual ads within the content of a generic web page. It has become a significant source of revenue for publishers ranging from individual bloggers to major newspapers. At the same time it is an important way for advertisers to reach their intended audience. This reach depends on the total number of exposures of the ad (impressions) and its click-through-rate (CTR) that can be viewed as the probability of an end-user clicking on the ad when shown. These two orthogonal, critical factors are both difficult to estimate and even individually can still be very informative and useful in planning and budgeting advertising campaigns. In this paper, we address the problem of forecasting the number of impressions for new or changed ads in the system. Producing such forecasts, even within large margins of error, is quite challenging: 1) ad selection in contextual advertising is a complicated process based on tens or even hundreds of page and ad features; 2) the publishers’ content and traffic vary over time; and 3) the scale of the problem is daunting: over a course of a week it involves billions of impressions, hundreds of millions of distinct pages, hundreds of millions of ads, and varying bids of other competing advertisers. We tackle these complexities by simulating the presence of a given ad with its associated bid over weeks of historical data. We obtain an impression estimate by counting how many times the ad would have been displayed if it were in the system over that period of time. We estimate this count by an efficient two-level search algorithm over the distinct pages in the data set. Experimental results show that our approach can accurately forecast the expected number of impressions of contextual ads in real time. We also show how this method can be used in tools for bid selection and ad evaluation.
This list was generated on Fri Feb 15 08:46:13 2019 GMT.
About this site
This website has been set up for WWW2009 by Christopher Gutteridge of the University of Southampton, using our EPrints software.
Preservation
We (Southampton EPrints Project) intend to preserve the files and HTML pages of this site for many years, however we will turn it into flat files for long term preservation. This means that at some point in the months after the conference the search, metadata-export, JSON interface, OAI etc. will be disabled as we "fossilize" the site. Please plan accordingly. Feel free to ask nicely for us to keep the dynamic site online longer if there's a rally good (or cool) use for it... [this has now happened, this site is now static]