Items by Wang, Gang
Number of items: 3. Wang, Gang and Hu, Jian and Zhu, Yunzhang and Li, Hua and Chen, Zheng Competitive Analysis from Click-Through Log. Existing keyword suggestion tools from various search engine companies could automatically suggest keywords related to the advertisers’ products or services, counting in simple statistics of the keywords, such as search volume, cost per click (CPC), etc. However, the nature of the generalized Second Price Auction suggests that better understanding the competitors’ keyword selection and bidding strategies better helps to win the auction, other than only relying on general search statistics. In this paper, we propose a novel keyword suggestion strategy, called Competitive Analysis, to explore the keyword based competition relationships among advertisers and eventually help advertisers to build campaigns with better performance. The experimental results demonstrate that the proposed Competitive Analysis can both help advertisers to promote their product selling and generate more revenue to the search engine companies.
Yan, Jun and Liu, Ning and Wang, Gang and Zhang, Wen and Jiang, Yun and Chen, Zheng How Much Can Behavioral Targeting Help Online Advertising? Behavioral Targeting (BT) is a technique used by online advertisers to increase the effectiveness of their campaigns, and is playing an increasingly important role in the online advertising market. However, it is underexplored in academia how much BT can truly help online advertising in search engines. In this paper we provide an empirical study on the click-through log of advertisements collected from a commercial search engine. From the experiment results over a period of seven days, we draw three important conclusions: (1) Users who clicked the same ad will truly have similar behaviors on the Web; (2) Click-Through Rate (CTR) of an ad can be averagely improved as high as 670% by properly segmenting users for behavioral targeted advertising in a sponsored search; (3) Using short term user behaviors to represent users is more effective than using long term user behaviors for BT. We conducted statistical t-test which verified that all conclusions drawn in the paper are statistically significant. To the best of our knowledge, this work is the first empirical study for BT on the click-through log of real world ads.
Hu, Jian and Wang, Gang and Lochovsky, Fred and Sun, Jian-tao and Chen, Zheng Understanding User's Query Intent with Wikipedia. Understanding the intent behind a user’s query can help search engine to automatically route the query to some corresponding vertical search engines to obtain particularly relevant contents, thus, greatly improving user satisfaction. There are three major challenges to the query intent classification problem: (1) Intent representation; (2) Domain coverage and (3) Semantic interpretation. Current approaches to predict the user’s intent mainly utilize machine learning techniques. However, it is difficult and often requires many human efforts to meet all these challenges by the statistical machine learning approaches. In this paper, we propose a general methodology to the problem of query intent classification. With very little human effort, our method can discover large quantities of intent concepts by leveraging Wikipedia, one of the best human knowledge base. The Wikipedia concepts are used as the intent representation space, thus, each intent domain is represented as a set of Wikipedia articles and categories. The intent of any input query is identified through mapping the query into the Wikipedia representation space. Compared with previous approaches, our proposed method can achieve much better coverage to classify queries in an intent domain even through the number of seed intent examples is very small. Moreover, the method is very general and can be easily applied to various intent domains. We demonstrate the effectiveness of this method in three different applications, i.e., travel, job, and person name. In each of the three cases, only a couple of seed intent queries are provided. We perform the quantitative evaluations in comparison with two baseline methods, and the experimental results show that our method significantly outperforms other approaches in each intent domain.
This list was generated on Fri Feb 15 08:44:48 2019 GMT.
About this site
This website has been set up for WWW2009 by Christopher Gutteridge of the University of Southampton, using our EPrints software.
Preservation
We (Southampton EPrints Project) intend to preserve the files and HTML pages of this site for many years, however we will turn it into flat files for long term preservation. This means that at some point in the months after the conference the search, metadata-export, JSON interface, OAI etc. will be disabled as we "fossilize" the site. Please plan accordingly. Feel free to ask nicely for us to keep the dynamic site online longer if there's a rally good (or cool) use for it... [this has now happened, this site is now static]
|