Koike, C and Pradalier, C and Bessiere, P and Mazer, E (2003) Proscriptive Bayesian Programming Application for Collision Avoidance. [Conference Paper]
Full text available as:
|
PDF
503Kb |
Abstract
Evolve safely in an unchanged environment and possibly following an optimal trajectory is one big challenge presented by situated robotics research field. Collision avoidance is a basic security requirement and this paper proposes a solution based on a probabilistic approach called Bayesian Programming. This approach aims to deal with the uncertainty, imprecision and incompleteness of the information handled. Some examples illustrate the process of embodying the programmer preliminary knowledge into a Bayesian program and experimental results of these examples implementation in an electrical vehicle are described and commented. Some videos illustrating these experiments can be found at http://www-laplace.imag.fr.
Item Type: | Conference Paper |
---|---|
Subjects: | Computer Science > Robotics |
ID Code: | 3757 |
Deposited By: | malrait, Olivier |
Deposited On: | 10 Aug 2004 |
Last Modified: | 11 Mar 2011 08:55 |
Metadata
- ASCII Citation
- Atom
- BibTeX
- Dublin Core
- EP3 XML
- EPrints Application Profile (experimental)
- EndNote
- HTML Citation
- ID Plus Text Citation
- JSON
- METS
- MODS
- MPEG-21 DIDL
- OpenURL ContextObject
- OpenURL ContextObject in Span
- RDF+N-Triples
- RDF+N3
- RDF+XML
- Refer
- Reference Manager
- Search Data Dump
- Simple Metadata
- YAML
Repository Staff Only: item control page