A Computational Model of Children's Semantic Memory

Denhière, Guy and Lemaire, Benoît (2004) A Computational Model of Children's Semantic Memory. [Conference Paper]

Full text available as:



A computational model of children's semantic memory is built from the Latent Semantic Analysis (LSA) of a multisource child corpus. Three tests of the model are described, simulating a vocabulary test, an association test and a recall task. For each one, results from experiments with children are presented and compared to the model data. Adequacy is correct, which means that this simulation of children's semantic memory can be used to simulate a variety of children's cognitive processes.

Item Type:Conference Paper
Keywords:LSA,Latent Semantic Analysis,semantic memory,children
Subjects:Psychology > Developmental Psychology
Linguistics > Semantics
Psychology > Cognitive Psychology
ID Code:3777
Deposited By: Lemaire, Benoit
Deposited On:25 Aug 2004
Last Modified:11 Mar 2011 08:55

References in Article

Select the SEEK icon to attempt to find the referenced article. If it does not appear to be in cogprints you will be forwarded to the paracite service. Poorly formated references will probably not work.

Bellegarda, J. (2000) Exploiting Latent Semantic Information in statistical language modeling. Proceedings of IEEE, 88 (8), 1279-1296.

Bellissens, C., Thiesbonenkamp, J. & Denhière, G. (2002). Property attribution in metaphor comprehension: simulations of topic and vehicle contribution within the LSA-CI framework. Twelfth Annual Meeting of the Society for Text and Discourse, June 2002.

Borgida, A. (1996). On the relative expressive power of description logics and predicate calculus, Artificial Intelligence, 82, 353-367.

Burgess, C. (1998). From simple associations to the building blocks of language: modeling meaning in memory with the HAL model. Behavior Research Methods, Instruments, & Computers, 30, 188-198.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K. & Harshman, R. (1990). Indexing by Latent Semantic Indexing. Journal of the American Society for Information Science , 41-6, 391-407.

de la Haye, F. (2003). Normes d'associations verbales chez des enfants de 9, 10 et 11 ans et des adultes. L'Année Psychologique, 103, 109-130.

Dumais, S. D. (2003). Data-driven approaches to information access. Cognitive Science 27 (3), 491-524.

Foltz, P. W. (1996). Latent Semantic Analysis for text-based research. Behavior Research Methods, Instruments and Computers, 28-2, 197-202.

French, R.M. & Labiouse, C (2002). Four problems with extracting human semantics from large text corpora. Proceedings of the 24th Annual Conference of the Cognitive Science Society, NJ:LEA.

Howard, M.W. & Kahanna, M.J. (2002). When does semantic similarity help episodic retrieval? Journal of Memory and Language 46, 85-98.

Kintsch, W. (1988). The role of knowledge in discourse comprehension: a construction-integration model. Psychological Review, 95, 163-182.

Kintsch, W. (2000). Metaphor comprehension: a computational theory. Psychonomic Bulletin & Review, 7-2, 257-266.

Kontostathis, A. & Pottenger, W.M. (2002). Detecting patterns in the LSI term-term matrix. Workshop on the Foundation of Data Mining and Discovery, IEEE International Conference on Data Mining.

Laham, D. (1997). Latent Semantic Analysis approaches to categorization. In M. G. Shafto & P. Langley (Eds.), Proceedings of the 19th annual meeting of the Cognitive Science Society (p. 979). Mawhwah, NJ: Erlbaum.

Landauer, T. K. & Dumais, S. T. (1997). A solution to Plato's problem : the Latent Semantic Analysis theory of acquisition, induction and representation of knowledge. Psychological Review, 104, 211-240.

Landauer, T. K., Foltz, P. W. & Laham, D. (1998). An introduction to Latent Semantic Analysis. Discourse Processes , 25, 259-284.

Landauer (2002). On the computational basis of learning and cognition: Arguments from LSA. In N. Ross (Ed.), The psychology of Learning and Motivation, 41, 43-84.

Lemaire, B & Dessus, P. (2001). A system to assess the semantic content of student essay. Journal of Educational Computing Research, 24-3, 305-320.

Lemaire, B. & Bianco, M. (2003). Contextual effects on metaphor comprehension: experiment and simulation. Proc. of the 5th International Conference on Cognitive Modeling (ICCM'2003), Bamberg, Germany.

Lenat, D.B. (1995). CYC: A large-scale investment in knowledge infrastructure. Comm. of the ACM, 11, 32-38.

Pariollaud, F., Denhière, D. & Verstiggel, J.C. (2002) Comprehension of idiomatic expressions: effect of meaning salience. Proc. of the 9th Int. Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU), Annecy, July 1-5.

Perfetti, C. A. (1998). The limits of co-occurrence: tools and theories in language research. Discourse Processes, 25, 363-377.

Quesada, J., Kintsch, W., & Gomez E. (2002) A theory of complex problem solving using Latent Semantic Analysis. In W. D. Gray & C. D. Schunn (Eds.) Proceedings of the 24th Annual Conference of the Cognitive Science Society. Lawrence Erlbaum Associates, Mahwah, NJ.

Rehder, B., Schreiner, M. E., Wolfe, M. B. W., Laham, D., Landauer, T. K. & Kintsch, W. (1998). Using Latent Semantic Analysis to assess knowledge: some technical considerations. Discourse Processes, 25, 337-354.

Sowa, J.F. (1991). Principles of Semantic Networks: Exploration in the Representation of Knowledge, Morgan Kaufmann.

Turney, P. (2001). Mining the Web for synonyms: PMI-IR versus LSA on TOEFL. In De Raedt, L. and Flach, P., (Eds). Proceedings of the 12th European Conference on Machine Learning (ECML-2001) , 491-502, Freiburg.

Vossen, P. (2003). Ontologies. In R. Mitkov (Ed.) The Oxford Handboof of Computational Linguistics. Oxford, 464-482.

Wolfe, M. B. W., Schreiner, M. E., Rehder, B., Laham, D., Foltz, P. W., Kintsch & W., Landauer, T. K. (1998).Learning from text: matching readers and texts by Latent Semantic Analysis. Discourse Processes, 25, 309-336.

Wolfe, M.B.W. & Goldman, S.R. (2003) Use of Latent Semantic Analysis for predicting psychological phenomena: two issues and proposed solutions. Behavior Research Methods Instruments & Computer, 35(1), 22-31.


Repository Staff Only: item control page