Chen, Yi and Weng, Juyang (2004) Developmental Learning: A Case Study in Understanding “Object Permanence”. [Conference Paper]
Full text available as:
|
PDF
380Kb |
Abstract
The concepts of muddy environment and muddy tasks set the ground for us to understand the essence of intelligence, both artificial and natural, which further motivates the need of Developmental Learning for machines. In this paper, a biologically inspired computational model is proposed to study one of the fundamental and controversial issues in cognitive science – “Object Permanence.” This model is implemented on a robot, which enables us to examine the robot’s behavior based on perceptual development through realtime experiences. Our experimental result shows consistency with prior researches on human infants, which not only sheds light on the highly controversial issue of object permanence, but also demonstrates how biologically inspired developmental models can potentially develop intelligent machines and verify computationalmodeling that has been established in cognitive science.
Item Type: | Conference Paper |
---|---|
Keywords: | developmental learning, object permanence, robot, robotic perceptual development, computational model |
Subjects: | Computer Science > Machine Learning Computer Science > Artificial Intelligence Computer Science > Robotics |
ID Code: | 4057 |
Deposited By: | Prince, Dr Christopher G. |
Deposited On: | 14 Apr 2005 |
Last Modified: | 11 Mar 2011 08:55 |
Metadata
- ASCII Citation
- Atom
- BibTeX
- Dublin Core
- EP3 XML
- EPrints Application Profile (experimental)
- EndNote
- HTML Citation
- ID Plus Text Citation
- JSON
- METS
- MODS
- MPEG-21 DIDL
- OpenURL ContextObject
- OpenURL ContextObject in Span
- RDF+N-Triples
- RDF+N3
- RDF+XML
- Refer
- Reference Manager
- Search Data Dump
- Simple Metadata
- YAML
Repository Staff Only: item control page