Marshall, J A and Alley, R K and Hubbard, R S (1996) Learning to predict visibility and invisibility from occlusion events. [Book Chapter]
Full text available as:
Postscript
240Kb |
Abstract
Visual occlusion events constitute a major source of depth information. This paper presents a self-organizing neural network that learns to detect, represent, and predict the visibility and invisibility relationships that arise during occlusion events, after a period of exposure to motion sequences containing occlusion and disocclusion events. The network develops two parallel opponent channels or "chains" of lateral excitatory connections for every resolvable motion trajectory. One channel, the "On" chain or "visible" chain, is activated when a moving stimulus is visible. The other channel, the "Off" chain or "invisible" chain, carries a persistent, amodal representation that predicts the motion of a formerly visible stimulus that becomes invisible due to occlusion. The learning rule uses disinhibition from the On chain to trigger learning in the Off chain. The On and Off chain neurons can learn separate associations with object depth ordering. The results are closely related to the recent discovery (Assad & Maunsell, 1995) of neurons in macaque monkey posterior parietal cortex that respond selectively to inferred motion of invisible stimuli.
Item Type: | Book Chapter |
---|---|
Subjects: | Biology > Animal Cognition Neuroscience > Computational Neuroscience Computer Science > Artificial Intelligence Computer Science > Machine Vision Computer Science > Neural Nets |
ID Code: | 438 |
Deposited By: | Marshall, Jonathan |
Deposited On: | 28 Apr 1998 |
Last Modified: | 11 Mar 2011 08:53 |
Metadata
- ASCII Citation
- Atom
- BibTeX
- Dublin Core
- EP3 XML
- EPrints Application Profile (experimental)
- EndNote
- HTML Citation
- ID Plus Text Citation
- JSON
- METS
- MODS
- MPEG-21 DIDL
- OpenURL ContextObject
- OpenURL ContextObject in Span
- RDF+N-Triples
- RDF+N3
- RDF+XML
- Refer
- Reference Manager
- Search Data Dump
- Simple Metadata
- YAML
Repository Staff Only: item control page