Singh, Vishwajeet and Miyapuram, K. P. and Bapi, Raju S. (2007) Detection of Cognitive States from fMRI data using Machine Learning Techniques. [Conference Poster]
Full text available as:
|
PDF
74Kb |
Abstract
Over the past decade functional Magnetic Resonance Imaging (fMRI) has emerged as a powerful technique to locate activity of human brain while engaged in a particular task or cognitive state. We consider the inverse problem of detecting the cognitive state of a human subject based on the fMRI data. We have explored classification techniques such as Gaussian Naive Bayes, k-Nearest Neighbour and Support Vector Machines. In order to reduce the very high dimensional fMRI data, we have used three feature selection strategies. Discriminating features and activity based features were used to select features for the problem of identifying the instantaneous cognitive state given a single fMRI scan and correlation based features were used when fMRI data from a single time interval was given. A case study of visuo-motor sequence learning is presented. The set of cognitive states we are interested in detecting are whether the subject has learnt a sequence, and if the subject is paying attention only towards the position or towards both the color and position of the visual stimuli. We have successfully used correlation based features to detect position-color related cognitive states with 80% accuracy and the cognitive states related to learning with 62.5% accuracy.
Item Type: | Conference Poster |
---|---|
Keywords: | Sequence Learning, fMRI, visuomotor, Naive Bayes Classifier, Support Vector machine, Nearest neighbour classification |
Subjects: | Neuroscience > Brain Imaging Computer Science > Machine Learning |
ID Code: | 5364 |
Deposited By: | Miyapuram, Mr Krishna |
Deposited On: | 19 Jan 2007 |
Last Modified: | 11 Mar 2011 08:56 |
References in Article
Select the SEEK icon to attempt to find the referenced article. If it does not appear to be in cogprints you will be forwarded to the paracite service. Poorly formated references will probably not work.
Metadata
- ASCII Citation
- Atom
- BibTeX
- Dublin Core
- EP3 XML
- EPrints Application Profile (experimental)
- EndNote
- HTML Citation
- ID Plus Text Citation
- JSON
- METS
- MODS
- MPEG-21 DIDL
- OpenURL ContextObject
- OpenURL ContextObject in Span
- RDF+N-Triples
- RDF+N3
- RDF+XML
- Refer
- Reference Manager
- Search Data Dump
- Simple Metadata
- YAML
Repository Staff Only: item control page