Togelius, Julian and De Nardi, Renzo and Lucas, Simon M. (2007) Towards automatic personalised content creation for racing games. [Conference Paper]
Full text available as:
|
PDF
3222Kb |
Abstract
Evolutionary algorithms are commonly used to create high-performing strategies or agents for computer games. In this paper, we instead choose to evolve the racing tracks in a car racing game. An evolvable track representation is devised, and a multiobjective evolutionary algorithm maximises the entertainment value of the track relative to a particular human player. This requires a way to create accurate models of players' driving styles, as well as a tentative definition of when a racing track is fun, both of which are provided. We believe this approach opens up interesting new research questions and is potentially applicable to commercial racing games.
Item Type: | Conference Paper |
---|---|
Keywords: | Games, Car Racing, Evolution, Neural Networks |
Subjects: | Computer Science > Artificial Intelligence |
ID Code: | 5573 |
Deposited By: | De Nardi, Mr Renzo |
Deposited On: | 28 May 2007 |
Last Modified: | 11 Mar 2011 08:56 |
References in Article
Select the SEEK icon to attempt to find the referenced article. If it does not appear to be in cogprints you will be forwarded to the paracite service. Poorly formated references will probably not work.
Metadata
- ASCII Citation
- Atom
- BibTeX
- Dublin Core
- EP3 XML
- EPrints Application Profile (experimental)
- EndNote
- HTML Citation
- ID Plus Text Citation
- JSON
- METS
- MODS
- MPEG-21 DIDL
- OpenURL ContextObject
- OpenURL ContextObject in Span
- RDF+N-Triples
- RDF+N3
- RDF+XML
- Refer
- Reference Manager
- Search Data Dump
- Simple Metadata
- YAML
Repository Staff Only: item control page