Computational physics of the mind

Duch, Wlodzislaw (1996) Computational physics of the mind. [Journal (Paginated)]

Full text available as:

[img] HTML


In the XIX century and earlier such physicists as Newton, Mayer, Hooke, Helmholtz and Mach were actively engaged in the research on psychophysics, trying to relate psychological sensations to intensities of physical stimuli. Computational physics allows to simulate complex neural processes giving a chance to answer not only the original psychophysical questions but also to create models of mind. In this paper several approaches relevant to modeling of mind are outlined. Since direct modeling of the brain functions is rather limited due to the complexity of such models a number of approximations is introduced. The path from the brain, or computational neurosciences, to the mind, or cognitive sciences, is sketched, with emphasis on higher cognitive functions such as memory and consciousness. No fundamental problems in understanding of the mind seem to arise. From computational point of view realistic models require massively parallel architectures.

Item Type:Journal (Paginated)
Keywords:psychophysics, mind models, neural networks, computational neuroscience, memory, consciousness
Subjects:Neuroscience > Behavioral Neuroscience
Computer Science > Artificial Intelligence
Computer Science > Dynamical Systems
Computer Science > Neural Nets
ID Code:914
Deposited By: Duch, Prof Wlodzislaw
Deposited On:02 Aug 2000
Last Modified:11 Mar 2011 08:54

References in Article

Select the SEEK icon to attempt to find the referenced article. If it does not appear to be in cogprints you will be forwarded to the paracite service. Poorly formated references will probably not work.

\bibitem{schrod} E. Schr\"{o}dinger, Ann. Phys. 63 (1920) 481

\bibitem{murray} D.J. Murray, Behavioral and Brain Sci. 16 (1993) 115-186

\bibitem{compbrain} P.S. Churchland, T.J. Sejnowski, The computational

brain. (MIT, Bradford Book 1992)

\bibitem{pauli} W. Pauli, Der Einfluss archetypischer Vorstellungen und die

Bildungnaturwissenschaftlischer Theorien bei Kepler, in: Naturerklrung und

Psyche (Rascher, Zurich 1952), pp. 109-194

\bibitem{cogneuro} M. S. Gazzaniga, ed. The Cognitive Neurosciences. (MIT,

Bradford Book 1995)

\bibitem{nnfaq} Frequently Asked Questions URL is\~{}prechelt/FAQ/neural-net-faq.html

or it may be obtained via ftp from, catalog

pub/usenet/news.answers file neural-net-faq

\bibitem{gerstner} W. Gerstner and J. Leo van Hemmen, Biol. Cybern. 67

(1992) 195

\bibitem{Rakover} S.S. Rakover, Precise of Metapsychology: Missing

Links in Behavior, Mind, and Science. PSYCOLOQUY 4 (1993)


\bibitem{stapp} H.P. Stapp, Mind, matter and quantum mechanics (Springer

Verlag, Heidelberg 1993)

\bibitem{penrose} R. Penrose, The Emperor's new mind (Oxford Univ. Press

1989); In the Shadow of the Mind (Oxford Univ. Press 1994)

\bibitem{dennett} D.C. Dennett, Consciousness explained (Little Brown,

Boston 1991)

\bibitem{newell} A. Newell, Unified theories of cognition. (Harvard Univ.

Press, Cambridge, MA 1990)

\bibitem{developm} E. Thelen, L.B. Smith, A Dynamic Systems Approach to the

Development of Cognition and Action (MIT Press 1994)

\bibitem{nnaprox} W. Duch, G.H.F. Diercksen, {\it Neural networks as tools

to solve problems in physics and chemistry} Comp. Physics Communic. {\bf 82}

(1994) 91-103

\bibitem{rashevsky} N. Rashevsky, Mathematical Biophysics (Dover, NY 1960)

\bibitem{neurocomp} J.A. Anderson, E. Rosenfeld (Eds). Neurocomputing:

Foundations of Research (MIT Press, MA 1988); J.A. Anderson, A. Pellionisz,

E. Rosenfeld (Eds). Neurocomputing 2: Directions for Research (MIT Press,

MA. 1990)

\bibitem{grossberg} S. Grossberg, The Adaptive Brain (North Holland 1987)

\bibitem{hebb} D. Hebb, The Organization of Behavior (J. Wiley, NY 1949)

\bibitem{CALM} J. Murre, CALM, Categorization and Learning Modules (Erlbaum


\bibitem{FSM} W. Duch, G.H.F. Diercksen, {\it Feature Space Mapping as a

universal adaptive system}. Comp. Phys. Communic. (1995);

Duch W (1996) Systems Analysis-Modeling-Simulation (submitted),

{\it From cognitive models to neurofuzzy systems - the mind space approach.}

\bibitem{RBF} T. Poggio and F. Girosi, Proc. of the IEEE 78 (1990) 1481; J.

Platt, Neural Comput. 3 (1991) 213; V. Kadirkamanathan, M. Niranjan, Neural

Comput. 5 (1993) 954

\bibitem{harmon} L.D. Harmon and E.R. Lewis, Neural modeling. Physiological

Reviews 46 (1968) 513-591

\bibitem{cowan} J.D. Cowan, A statistical mechanics of nervous activity.

Lectures on Math. in Life Sciences 2 (1970) 1-57, ed. by M. Gerstenhaber

(Am. Math. Soc, Providence RI)

\bibitem{freeman} W.J. Freeman, Mass Action in the Nervous system (Academic

Press, NY 1975)

\bibitem{hopfield} J.J. Hopfield, Proc. Nat. Acad. Sci. 79 (1982) 2554;

ibid 81 (1984) 3088

\bibitem{amit} D.J. Amit, Modeling brain function. The world of attractor

neural networks. (Cambridge Univ. Press 1989); T.L.H. Watkin, A. Rau, M.

Biehl, Rev. Modern Phys. 65 (1993) 499

\bibitem{annios} P.A. Annios, Mathematical models of memory traces and

forgetfulness. Kybernetik 10 (1972) 165-167; 11 (1972) 5-14

\bibitem{caianiello} E.R. Caianiello, Outline of a theory of thought

processes and thinking machines. Journal of Theor. Biology 2 (1961) 204-235;

E.R. Caianiello, A theory of neural networks. In: Neural Computing

Architectures, ed. I. Aleksander (MIT Press, MA 1989)

\bibitem{LTP} T.H. Brown, P.F. Chapman, E.W. Kairiss, C.L. Keenan,

Long-term synaptic potentiation. Science {\bf 242} (1988) 724--728

\bibitem{levine} D.S. Levine, Introduction to neural and cognitive modeling

(L. Erlbaum, London 1991)

\bibitem{visualcortex} E. Erwin, K. Obermayer, K. Schulten, Models of

Orientation and Ocular Dominance Columns in the Visual Cortex: A Critical

Comparison. Neural Computation 7 (1995) 425-468

\bibitem{kohonen} T. Kohonen, Self-Organizing Maps (Springer Series in

Information Sciences, Vol. 30, 1995)

\bibitem{population} A.P. Georgopoulos, M. Taira, A. Lukashin, Cognitive

neurophysiology of the motor cortex. Science 260 (1993) 47-52

\bibitem{Mussa-Ivaldi} F.A. Mussa-Ivaldi, From basis functions to basis

fields. Vector field approximation from spare data. {\em Biol. Cybernetics}

67 (1992) 479-489

\bibitem{dualpop} E. Koechlin and Y. Burnod, Dual population coding in the

neocortex: a model of interaction between representation and attention in

the visual cortex. (preprint, Inst. des Neurosciences, Universit\'e Pierre

et Marie Curie, Paris 1995)

\bibitem{skarda} C. Skarda, W.J. Freeman, How brains make chaos to make

sense of the world. The Behavioral and Brain Sci. 10 (1987) 161-195

\bibitem{pulvermueller} Pulvermueller F, Preissl H, Eulitz C, Pantev C,

Lutzenberger W, Elbert T and Birbaumer N. (1994) PSYCOLOQUY 5(48)


\bibitem{griniasty} M. Griniasty, M. Tsodyks, D. Amit, Conversion of

temporal correlations between stimuli to spatial correlations between

attractors. Neural Comput. 5 (1993) 1-17

\bibitem{engel} A.K. Engel, P. K\"onig, A.K. Kreiter, T.B. Schillen, W.

Singer. Temporal coding in the neocortex: new vistas on integration in the

nervous system. Trends in Neurosc. 15 (1992) 218-226

\bibitem{john} E.R. John, M. Schimokochi, F.P. Bartlett, Neural readout

from memory during generalization. Science {\bf 164} (1969) 1534-1536

\bibitem{kelso} J.A. Scott Kelso, Dynamic Patterns (Bredford Book, MIT

Press 1995)

\bibitem{bishop} C.M. Bishop, Training with noise is equivalent to

Tikhonov regularization. Neural Computation 7 (1995) 108-116

\bibitem{clark} R. Clark, Dynamical systems. Stability, symbolic

dynamics and chaos (CRC Press, London 1995)

\bibitem{mayer} R.E. Mayer, Thinking, problem solving, cognition. (WH

Freeman 1992)

\bibitem{mindspace} W. Duch (1994) UMK-KMK-TR 1/94 report, {\it A solution

to the fundamental problems of cognitive sciences}, available from

\bibitem{chuaosc} P. Deregal, Chua's oscillator: a zoo of attractors, J. of

Circuits, Systems and Computers 3 (1993) 309-359; L.O. Chua, C.A. Desoer,

E.S. Kuh, Linear and nonlinear circuits (McGraw-Hill, New York 1987);

M.P. Kennedy, Three Steps to Chaos, IEEE Trans. Circuits and Systems

40 (1993) 640-674

\bibitem{synergetic} H. Haken, Synergetic computers and cognition

(Springer, 1991)

\bibitem{olfaction} H. Lilienstr\"om, Modeling the dynamics of olfactory

cortex using simplified network units and realistic architecture", Int.

J. Neural Systems 2 (1991) 1-15; X. Wu, H. Lilienstr\"om, Regulating

the nonlinear dynamics of olfactory cortex, Network 5 (1994) 47-60

\bibitem{geldard} F.A. Geldard, The human senses (Wiley, New York 1962)

\bibitem{simulacrum} B. MacLennan, Field computation in the brain,

CS-92-174 (Univ. of Tennessee, Knoxville, TN 37996) %

\bibitem{casey} M.P. Casey, Computation in Discrete-Time Dynamical Systems

(UCSD 1995, available in neuroprose).

\bibitem{fauconnier} G. Fauconniere, Mental Spaces (Cambridge Univ. Press


\bibitem{neurons-symbols} I. Aleksander, H. Morton, Neurons and symbols

(Chapman and Hall 1993)

\bibitem{MBR} D. Waltz, Memory-based reasoning, in: M.A. Arbib, The

Handbook of Brain Theory and Neural Networks (MIT Press 1995), pp.


\bibitem{brainsize} J.N.H. Heemskerk, J.M.J. Murre, Brain-size

neurocomputers. (1995, draft); J.N.H. Heemskerk, Overview of neural

hardware (1995, draft), available from;

\bibitem{baars} B.J. Baars, A cognitive theory of consciousness

(Cambridge Univ. Press 1988)

\bibitem{verhulst} F. Verhulst, Metaphors for psychoanalysis. Nonlinear

Science Today 4 (1994) 1-6


Repository Staff Only: item control page