Cogprints

Motor Learning Mechanism on the Neuron Scale

Liu, Mr. Peilei and Wang, Prof. Ting (2014) Motor Learning Mechanism on the Neuron Scale. [Preprint]

Full text available as:

[img]
Preview
PDF
392Kb

Abstract

Based on existing data, we wish to put forward a biological model of motor system on the neuron scale. Then we indicate its implications in statistics and learning. Specifically, neuron’s firing frequency and synaptic strength are probability estimates in essence. And the lateral inhibition also has statistical implications. From the standpoint of learning, dendritic competition through retrograde messengers is the foundation of conditional reflex and “grandmother cell” coding. And they are the kernel mechanisms of motor learning and sensory-motor integration respectively. Finally, we compare motor system with sensory system. In short, we would like to bridge the gap between molecule evidences and computational models.

Item Type:Preprint
Keywords:Motor learning, neural mechanism, cerebellum, sensory-motor integration
Subjects:Neuroscience > Behavioral Neuroscience
Biology > Animal Behavior
Neuroscience > Biophysics
Biology > Cognitive Archeology
Neuroscience > Computational Neuroscience
Computer Science > Artificial Intelligence
Computer Science > Dynamical Systems
Computer Science > Machine Learning
Neuroscience > Neural Modelling
ID Code:9760
Deposited By: Liu, Mr. Peilei
Deposited On:24 Aug 2014 21:07
Last Modified:20 Apr 2015 11:40

References in Article

Select the SEEK icon to attempt to find the referenced article. If it does not appear to be in cogprints you will be forwarded to the paracite service. Poorly formated references will probably not work.

1. D.M. Wolpert, Z. Ghahramani, M.I. Jordan, An internal model for sensorimotor integration. Science 269, 1880-1882 (1995).

2. M. Kawato, Internal models for motor control and trajectory planning. Curr. Opin. Neurobiol. 9, 718-727 (1999).

3. E. Todorov, M.I. Jordan, Optimal feedback control as a theory of motor coordination. Nature Neurosci. 5, 1226-1235 (2002).

4. D. MARR, A theory of cerebellar cortex. J. Physiol. 202, 437-470 (1969).

5. J. S. Albus, A theory of cerebellar function, Math. Biosci. 10, 25-61 (1971).

6. L. Shmuelof, J.W. Krakauer, Are we ready for a natural history of motor learning? Neuron 72, 469-476 (2011).

7. K. Yarrow, P. Brown, J.W. Krakauer, Inside the brain of an elite athlete: the neural processes that support high achievement in sports. Nature Rev. Neurosci. 1, 585-596 (2009).

8. E.R. Schneider, thesis, Electrogenic dendrites of the deep cerebellar nuclei. Princeton University (2012).

9. A.L. Barabási, R. Albert, Emergence of scaling in random networks. Science 286, 509-512 (1999).

10. P. Liu, T. Wang, A quantitative neural coding model of sensory memory, in press (available at http://arxiv.org/abs/1406.6453).

11. W.S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biol. 5, 115-133 (1943).

12. A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500-544 (1952).

13. M. Ito, M. Sakurai, P. Tongroach, Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkenje cells. J. Physio1. 324, 113-134 (1982).

14. T.V.P. Bliss, A.R. Gardner-Medwin, Long-lasting potentiation of synaptic transmission in the dentate area of the unanaesthetized rabbit following stimulation of the perforant path. J. Physiol. 232, 357-374 (1973).

15. H. Markram, J. Lübke, M. Frotscher, B. Sakmann, Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275, 213-215 (1997).

16. N. Zheng, I.M. Raman, Ca currents activated by spontaneous firing and synaptic disinhibition in neurons of the cerebellar nuclei. J. Neurosci. 29, 9826-9838 (2009).

17. K. Alviña, G. Ellis-Davies, K. Khodakhah, T-type calcium channels mediate rebound firing in intact deep cerebellar neurons. Neuroscience 158, 635-641 (2009).

18. X. Yu, X. Xu, S. He, J. He, Change detection by thalamic reticular neurons. Nature Neurosci. 12, 1165-1171 (2009).

19. W. G. Regehr, M. R. Carey, A. R. Best, Activity-dependent regulation of synapses by retrograde messengers. Neuron 63, 154-170 (2009).

20. S. Grossberg, Adaptive resonance theory: how a brain learns to consciously attend, learn, and recognize a changing world. Neural Networks 37, 1-47 (2013).

21. T. Poggio, E. Bizzi, Generalization in vision and motor control. Nature 43, 768-774 (2004).

22. G. B. Ermentrout, R. F. Galán, N. N. Urban, Relating neural dynamics to neural coding. Phys. Rev. 99, 248103 (2007).

23. C.G. Gross, Genealogy of the "grandmother cell". Neuroscientist 8, 512-518 (2002).

24. V. Gallese, L. Fadiga, L. Fogassi, G. Rizzolatti, Action recognition in the premotor cortex. Brain 119, 593-609 (1996).

25. G. Westermanna, E.R. Miranda, A new model of sensorimotor coupling in the development of speech. Brain Lang. (2004), doi:10.1016/S0093-934X(03)00345-6.

26. K. Doya, Complementary roles of basal ganglia and cerebellum in learning and motor control. Curr. Opin. Neurobiol. 10, 732-739 (2000).

27. J.R. Wickens, A.J. Beggt, G.W. Arbuthnott, Dopamine reverses the depression of rat corticostriatal synapses which normally follows high-frequency stimulation of cortex in vitro. Neuroscience 70, 1-5 (1996).

28. K.A. Thoroughman, R. Shadmehr, Learning of action through adaptive combination of motor primitives. Nature 407, 742-747 (2000).

29. F. Crick, The Astonishing Hypothesis: The Scientific Search for the Soul (Charles Scribner's Sons, New York, 1994).

30. K. Shima, J. Tanji, Role for cingulate motor area cells in voluntary movement selection based on reward. Science 282, 1335-1338 (1998).

31. D. Nozaki, I. Kurtzer, S.H. Scott, Limited transfer of learning between unimanual and bimanual skills within the same limb. Nature Neurosci. 9, 1364-1366 (2006).

Metadata

Repository Staff Only: item control page