This item is a Poster.
- Chang, William - University of Southern California
- Pantel, Patrick - Yahoo! Laboratories
- Popescu, Ana-Maria - Yahoo! Laboratories
- Gabrilovich, Evgeniy - Yahoo! Laboratories
Published Version
| PDF (536Kb) |
Abstract
In online advertising, pervasive in commercial search engines, advertisers typically bid on few terms, and the scarcity of data makes ad matching difficult. Suggesting additional bidterms can significantly improve ad clickability and conversion rates. In this paper, we present a large-scale bidterm suggestion system that models an advertiser’s intent and finds new bidterms consistent with that intent. Preliminary experiments show that our system significantly increases the coverage of a state of the art production system used at Yahoo while maintaining comparable precision.
Export Record As...
- HTML Citation
- ASCII Citation
- Resource Map
- OpenURL ContextObject
- EndNote
- BibTeX
- OpenURL ContextObject in Span
- MODS
- DIDL
- EP3 XML
- JSON
- Dublin Core
- Reference Manager
- Eprints Application Profile
- Simple Metadata
- Refer
- METS