Items by Qu, Mingcheng
Number of items: 3. Wu, Hao and Qiu, Guang and He, Xiaofei and Shi, Yuan and Qu, Mingcheng and Shen, Jing and Bu, Jiajun and Chen, Chun Advertising Keyword Generation Using Active Learning. This paper proposes an efficient relevance feedback based interactive model for keyword generation in sponsored search advertising. We formulate the ranking of relevant terms as a supervised learning problem and suggest new terms for the seed by leveraging user relevance feedback information. Active learning is employed to select the most informative samples from a set of candidate terms for user labeling. Experiments show our approach improves the relevance of generated terms significantly with little user effort required.
Qu, Mingcheng and Qiu, Guang and He, Xiaofei and Zhang, Cheng and Wu, Hao and Bu, Jiajun and Chen, Chun Probabilistic Question Recommendation for Question Answering Communities. User-Interactive Question Answering (QA) communities such as Yahoo! Answers are growing in popularity. However, as these QA sites always have thousands of new questions posted daily, it is difficult for users to find the questions that are of interest to them. Consequently, this may delay the answering of the new questions. This gives rise to question recommendation techniques that help users locate interesting questions. In this paper, we adopt the Probabilistic Latent Semantic Analysis (PLSA) model for question recommendation and propose a novel metric to evaluate the performance of our approach. The experimental results show our recommendation approach is effective.
Zhu, Junyan and Wang, Can and He, Xiaofei and Bu, Jiajun and Chen, Chun and Shang, Shujie and Qu, Mingcheng and Lu, Gang Tag-Oriented Document Summarization. Social annotations on a Web document are highly generalized description of topics contained in that page. Their tagged frequency indicates the user attentions with various degrees. This makes annotations a good resource for summarizing multiple topics in a Web page. In this paper, we present a tag-oriented Web document summarization approach by using both document content and the tags annotated on that document. To improve summarization performance, a new tag ranking algorithm named EigenTag is proposed in this paper to reduce noise in tags. Meanwhile, association mining technique is employed to expand tag set to tackle the sparsity problem. Experimental results show our tag-oriented summarization has a significant improvement over those not using tags.
This list was generated on Fri Feb 15 08:51:35 2019 GMT.
About this site
This website has been set up for WWW2009 by Christopher Gutteridge of the University of Southampton, using our EPrints software.
Preservation
We (Southampton EPrints Project) intend to preserve the files and HTML pages of this site for many years, however we will turn it into flat files for long term preservation. This means that at some point in the months after the conference the search, metadata-export, JSON interface, OAI etc. will be disabled as we "fossilize" the site. Please plan accordingly. Feel free to ask nicely for us to keep the dynamic site online longer if there's a rally good (or cool) use for it... [this has now happened, this site is now static]
|