Turney, Peter and Littman, Michael (2003) Measuring praise and criticism: Inference of semantic orientation from association. [Journal (Paginated)]
Full text available as:
|
PDF
200Kb |
Abstract
The evaluative character of a word is called its semantic orientation. Positive semantic orientation indicates praise (e.g., "honest", "intrepid") and negative semantic orientation indicates criticism (e.g., "disturbing", "superfluous"). Semantic orientation varies in both direction (positive or negative) and degree (mild to strong). An automated system for measuring semantic orientation would have application in text classification, text filtering, tracking opinions in online discussions, analysis of survey responses, and automated chat systems (chatbots). This paper introduces a method for inferring the semantic orientation of a word from its statistical association with a set of positive and negative paradigm words. Two instances of this approach are evaluated, based on two different statistical measures of word association: pointwise mutual information (PMI) and latent semantic analysis (LSA). The method is experimentally tested with 3,596 words (including adjectives, adverbs, nouns, and verbs) that have been manually labeled positive (1,614 words) and negative (1,982 words). The method attains an accuracy of 82.8% on the full test set, but the accuracy rises above 95% when the algorithm is allowed to abstain from classifying mild words.
Item Type: | Journal (Paginated) |
---|---|
Keywords: | semantic orientation, semantic association, web mining, text mining, text classification, unsupervised learning, mutual information, latent semantic analysis |
Subjects: | Computer Science > Statistical Models Computer Science > Language Linguistics > Computational Linguistics Linguistics > Semantics Computer Science > Machine Learning |
ID Code: | 3164 |
Deposited By: | Turney, Peter |
Deposited On: | 19 Sep 2003 |
Last Modified: | 11 Mar 2011 08:55 |
References in Article
Select the SEEK icon to attempt to find the referenced article. If it does not appear to be in cogprints you will be forwarded to the paracite service. Poorly formated references will probably not work.
Metadata
- ASCII Citation
- Atom
- BibTeX
- Dublin Core
- EP3 XML
- EPrints Application Profile (experimental)
- EndNote
- HTML Citation
- ID Plus Text Citation
- JSON
- METS
- MODS
- MPEG-21 DIDL
- OpenURL ContextObject
- OpenURL ContextObject in Span
- RDF+N-Triples
- RDF+N3
- RDF+XML
- Refer
- Reference Manager
- Search Data Dump
- Simple Metadata
- YAML
Repository Staff Only: item control page